Embryontology Barry Smith Southampton, July 21, 2015

Old biology data (pre-Feb. 2001)

New biology data

MKVSDRRKFEKANFDEFESALNNKNDLVHCPSITLFESIPTEVRSF YEDEKSGLIKVVKFRTGAMDRKRSFEKVVISVMVGKNVKKFLTFV EDEPDFQGGPISKYLIPKKINLMVYTLFQVHTLKFNRKDYDTLSLF YLNRGYYNELSFRVLERCHEIASARPNDSSTMRTFTDFVSGAPIV RSLQKSTIRKYGYNLAPYMFLLLHVDELSIFSAYQASLPGEKKVDT ERLKRDLCPRKPIEIKYFSQICNDMMNKKDRLGDILHIILRACALNF GAGPRGGAGDEEDRSITNEEPIIPSVDEHGLKVCKLRSPNTPRRL RKTLDAVKALLVSSCACTARDLDIFDDNNGVAMWKWIKILYHEVA QETTLKDSYRITLVPSSDGISLLAFAGPQRNVYVDDTTRRIQLYTD YNKNGSSEPRLKTLDGLTSDYVFYFVTVLRQMQICALGNSYDAFN HDPWMDVVGFEDPNQVTNRDISRIVLYSYMFLNTAKGCLVEYAT FRQYMRELPKNAPQKLNFREMRQGLIALGRHCVGSRFETDLYES ATSELMANHSVQTGRNIYGVDFSLTSVSGTTATLLQERASERWIQ WLGLESDYHCSFSSTRNAEDVDISRIVLYSYMFLNTAKGCLVEYA TFRQYMRELPKNAPQKLNFREMRQGLIALGRHCVGSRFETDLYE SATSELMANHSVQTGRNIYGVDFSLTSVSGTTATLLQERASERWI

How to do biology across the genome?

MKVSDRRKFEKANFDEFESALNNKNDLVHCPSITLFESIPTEVRSFYEDEKSGLIKVVKFRTGAMDRKRSFEKVVIS VMVGKNVKKFLTFVEDEPDFQGGPISKYLIPKKINLMVYTLFQVHTLKFNRKDYDTLSLFYLNRGYYNELSFRVLER CHEIASARPNDSSTMRTFTDFVSGAPIVRSLQKSTIRKYGYNLAPYMFLLLHVDELSIFSAYQASLPGEKKVDTERL KRDLCPRKPIEIKYFSQICNDMMNKKDRLGDILHIILRACALNFGAGPRGGAGDEEDRSITNEEPIIPSVDEHGLKVC KLRSPNTPRRLRKTLDAVKALLVSSCACTARDLDIFDDNNGVAMWKWIKILYHEVAQETTLKDSYRITLVPSSDGIS LLAFAGPQRNVYVDDTTRRIQLYTDYNKNGSSEPRLKTLDGLTSDYVFYFVTVLRQMQICALGNSYDAFNHDPWM DVVGFEDPNQVTNRDISRIVLYSYMFLNTAKGCLVEYATFRQYMRELPKNAPQKLNFREMRQGLIALGRHCVGSR FETDLYESATSELMANHSVQTGRNIYGVDFSLTSVSGTTATLLQERASERWIQWLGLESDYHCSFSSTRNAEDVM KVSDRRKFEKANFDEFESALNNKNDLVHCPSITLFESIPTEVRSFYEDEKSGLIKVVKFRTGAMDRKRSFEKVVISV MVGKNVKKFLTFVEDEPDFQGGPISKYLIPKKINLMVYTLFQVHTLKFNRKDYDTLSLFYLNRGYYNELSFRVLERC HEIASARPNDSSTMRTFTDFVSGAPIVRSLQKSTIRKYGYNLAPYMFLLLHVDELSIFSAYQASLPGEKKVDTERLK RDLCPRKPIEIKYFSQICNDMMNKKDRLGDILHIILRACALNFGAGPRGGAGDEEDRSITNEEPIIPSVDEHGLKVCK LRSPNTPRRLRKTLDAVKALLVSSCACTARDLDIFDDNNGVAMWKWIKILYHEVAQETTLKDSYRITLVPSSDGISLL AFAGPQRNVYVDDTTRRIQLYTDYNKNGSSEPRLKTLDGLTSDYVFYFVTVLRQMQICALGNSYDAFNHDPWMD VVGFEDPNOVTNRDISRIVLYSYMFLNTAKGCLVEYATFRQYMRELPKNAPQKLNFREMRQGLIALGRHCVGSRF ETDLYESATSELMANHSVOTGRNIYGVDESLTSVSGTTATLLOERASERWIOWLGLESDYHCSESSTRNAEDVMK VSDRRKFEKANFDEFESALNNKNDLVHCPSITLFESIPTEVRSFYEDEKSGLIKVVKFRTGAMDRKRSFEKVVISVM VGKNVKKFLTFVEDEPDFQGGPISKYLIPKKINLMVYTLFQVHTLKFNRKDYDTLSLFYLNRGYYNELSFRVLERCH EIASARPNDSSTMRTFTDFVSGAPIVRSLQKSTIRKYGYNLAPYMFLLLHVDELSIFSAYQASLPGEKKVDTERLKR DLCPRKPIEIKYFSQICNDMMNKKDRLGDILHIILRACALNFGAGPRGGAGDEEDRSITNEEPIIPSVDEHGLKVCKL RSPNTPRRLRKTLDAVKALLVSSCACTARDLDIFDDNNGVAMWKWIKILYHEVAQETTLKDSYRITLVPSSDGISLL AFAGPORNVYVDDTTRRIQLYTDYNKNGSSEPRLKTLDGLTSDYVFYFVTVLRQMQICALGNSYDAFNHDPWMD VVGFEDPNQVTNRDISRIVLYSYMFLNTAKGCLVEYATFRQYMRELPKNAPQKLNFREMRQGLIALGRHCVGSRF ETDLYESATSELMANHSVQTGRNIYGVDFSLTSVSGTTATLLQERASERWIQWLGLESDYHCSFSSTRNAEDVMK VSDRRKFEKANFDEFESALNNKNDLVHCPSITLFESIPTEVRSFYEDEKSGLIKVVKFRTGAMDRKRSFEKVVISVM VGKNVKKFLTFVEDEPDFQGGPISKYLIPKKINLMVYTLFQVHTLKFNRKDYDTLSLFYLNRGYYNELSFRVLERCH EIASARPNDSSTMRTFTDFVSGAPIVRSLQKSTIRKYGYNLAPYMFLLLHVDELSIFSAYQASLPGEKKVDTERLKR

4

how to link the kinds of phenomena represented here

or here

or here

MKVSDRRKFEKANFDEFESALNNKNDLVHCPSITLFESIPTEVRSFYEDEKSGLIKVVKFRTGAMDRK RSFEKVVISVMVGKNVKKFLTFVEDEPDFQGGPIPSKYLIPKKINLMVYTLFQVHTLKFNRKDYDTLSL FYLNRGYYNELSFRVLERCHEIASARPNDSSTMRTFTDFVSGAPIVRSLQKSTIRKYGYNLAPYMFLLL HVDELSIFSAYQASLPGEKKVDTERLKRDLCPRKPIEIKYFSQICNDMMNKKDRLGDILHIILRACALNF

GAGF IFDDI NKNG RIVLY TSELI AGEA to the kinds of data represented here?

PRRLRKTLDAVKALLVSSCACTARDLD SLLAFAGPQRNVYVDDTTRRIQLYTDY AFNHDPWMDVVGFEDPNQVTNRDIS EMRQGLIALGRHCVGSRFETDLYESA RWIQWLGLESDYHCSFSSTRNAEDVV FEFRDLHQLRLCYEIYMADTPSVAVQA

PPGYGNTELFTILFLIALASNGDVETVSFLFVFTTVLLAINGIVIIRLGRRGCLNVAPVRNFIEEGYDGVTDL YVGIYDDLASTNFTDRIAAWENIVECTFRTNNVKLGYLIVDEFHNFETEVYRQSQFGGITNLDFDAFEK AIFLSGTAPEAVADAALQRIGLTGLAKKSMDINELKRSEDLSRGLSSYPTRMFNLIKEKSEVPLGHVHKI RKKVESQPEEALKLLLALFESEPESKAIVVASTTNEVEELACSWRKYFRVVWIHGKLGAAEKVSRTKE FVTDGSMQVLIGTKLVTEGIDIKQLMMVIMLDNRLNIIELIQGVGRLRDGGLCYLLSRKNSWAARNRKG ELPPKEGCITEQVREFYGLESKKGKKGQHVGCCGSRTDLSADTVELIERMDRLAEKQATASMSIVAL PSSFQESNSSDRYRKYCSSDEDSNTCIHGSANASTNASTNAITTASTNVRTNATTNASTNATTNASTN ASTNATTNASTNATTNSSTNATTTASTNVRTSATTTASINVRTSATTTESTNSSTNATTTESTNSSTNA TTTESTNSNTSATTTASINVRTSATTTESTNSSTSATTTASINVRTSATTTKSINSSTNATTTESTNSNT NATTTESTNSSTNATTTESTNSSTNATTTESTNSNTSAATTESTNSNTSATTTESTNASAKEDANKDG NAEDNRFHPVTDINKESYKRKGSQMVLLERKKLKAQFPNTSENMNVLQFLGFRSDEIKHLFLYGIDIYF CPEGVFTQYGLCKGCQKMFELCVCWAGQKVSYRRIAWEALAVERMLRNDEEYKEYLEDIEPYHGDP VGYLKYFSVKRREIYSQIQRNYAWYLAITRRRETISVLDSTRGKQGSQVFRMSGRQIKELYFKVWSNL RESKTEVLQYFLNWDEKKCQEEWEAKDDTVVVEALEKGGVFQRLRSMTSAGLQGPQYVKLQFSRH HRQLRSRYELSLGMHLRDQIALGVTPSKVPHWTAFLSMLIGLFYNKTFRQKLEYLLEQISEVWLLPHW I DI ANVEVI AADDTRVPI YMI MVAVHKEI DSDDVPDGREDII I CRDSSREVGEI IGI EYNKTERQKI E YLLEQISEVWLLPHWLDLANVEVLAADDTRVPLYMLMVAVHKELDSDDVPDGREDILLCRDSSREV@ ELIGLFYNKTFRQKLEYLLEQISEVWLLPHWLDLANVEVLAADDTRVPLYMLMVAVHKELDSDDVPDG

Answer

Create a controlled logically structured consensus vocabulary

– called an "ontology" –

representing the types of entities (things, processes, ...) scientists are [still] interested in, and use the terms in this ontology to tag or annotate data about these entities

Analysis of microRNA expression profile by small RNA sequencing in Down syndrome fetuses

Authors: Yong Xu, Wuxian Li, Xueyan Liu, Hualin Ma, Zhiguang Tu, 🖾 Yong Dai

Corresponding author: Yong Dai [daiyong22@yahoo.com.cn]

View Affiliations

Published online on: Wednesday, September 18, 2013

Pages: 1115-1125 DOI: 10.3892/ijmm.2013.1499

November 2013 Volume 32 Issue 5 Print ISSN: 1107-3756 Online ISSN:1791-244X 2014 Impact Factor: 2.088 Ranked #22/123 Medicine

GO:0045449.regulation of transcription.

GO:0019219.regulation of nucleobase, nucleoside, nucleotide and GO:0010468.regulation of gene expression.

GO:0010556.regulation of macromolecule biosynthetic process

GO:0031326.regulation of cellular biosynthetic process.

GO:0044267.cellular protein metabolic process.

GO:0006464.protein modification process.

GO:0007264.small GTPase-mediated signal transduction.

GO:0007242.intracellular signaling cascade.

GO:0007423.sensory organ development.

	Journal home > Archive > Table of Contents > Commentary > Abstract
Journal home	
Advance online publication	COMMENTARY
Current issue	Natura Canatica 25 20 (2000)
Archive	doi:10.1038/75556
i. Supplementary info	
Press releases	Gene Ontology: tool for the unification of
Press releases	Gene Ontology: tool for the unification of biology
Press releases Free Association (blog)	Gene Ontology: tool for the unification of biology
Press releases Free Association (blog) Supplements	Gene Ontology: tool for the unification of biology Michael Ashburner ^{1, 5} , Catherine A. Ball ^{3, 5} , Judith A.
Press releases Free Association (blog) Supplements Focuses	Gene Ontology: tool for the unification of biology Michael Ashburner ^{1, 5} , Catherine A. Ball ^{3, 5} , Judith A. Blake ^{4, 5} , David Botstein ^{3, 5} , Heather Butler ^{1, 5} , J. Michael
Press releases Free Association (blog) Supplements Focuses	Gene Ontology: tool for the unification of biology Michael Ashburner ^{1, 5} , Catherine A. Ball ^{3, 5} , Judith A. Blake ^{4, 5} , David Botstein ^{3, 5} , Heather Butler ^{1, 5} , J. Michael Cherry ^{3, 5} , Allan P. Davis ^{4, 5} , Kara Dolinski ^{3, 5} , Selina S.

GO provides *species neutral* terms for tagging biological data

it thereby enables data deriving from experiments on model organisms (mouse, fish, fly, ...) to be used to derive and test hypotheses about human health and disease

Example: Embryo implanation http://amigo.geneontology.org/amigo/

Term Information

Accession	GO:0007566
Name	embryo implantation
Ontology	biological_process
Synonyms	blastocyst implantation
Definition	Attachment of the blastocyst to the uterine lining. Source: GOC:isa_complete, http://www.medterms.com
Comment	None
History	See term history for GO:0007566 at QuickGO
Subset	None
Community	GN Add usage comments for this term on the GONUTS wiki.
Related	Link to all genes and gene products associated to embryo implantation.
	Link to all direct and indirect annotations to embryo implantation.
	Link to all direct and indirect annotations download (limited to first 10,000) for embryo implantation.
Feedback	Contact the GO Helpdesk if you find mistakes or have concerns about the data you find here.

+	document_category: annotation	Gene/product	Gene/product	Qualifier	Direct	Annotation	Assigned	Taxon	Evidence
+ No	regulates_closure: GO:0007566 current user filters. Source	MST1	Uncharacterized protein		embryo implantation	extension	Ensembl	Canis lupus familiaris	IEA
•	Assigned by Ontology (aspect)	OOEP	Oocyte- expressed protein		embryo implantation		Ensembl	Canis Iupus familiaris	IEA
•	Evidence type	OOEP	Oocyte- expressed protein homolog		embryo implantation		Ensembl	Bos taurus	IEA
•	Qualifier	PTGIS	Prostacyclin synthase		embryo implantation		Ensembl	Bos taurus	IEA
•	Taxon The top (21) redundant fields are not shown Boreoeutheria(354) + -	FKBP4	Uncharacterized protein		embryo implantation		Ensembl	Canis lupus familiaris	IEA
	Mammalia (354) + - more Direct annotation	TIMP1	Metalloproteinase inhibitor 1		negative regulation of trophoblast cell		Ensembl	Canis lupus familiaris	IEA
•	Annotation extension	NLRP5	Uncharacterized protein		embryo implantation		Ensembl	Canis lupus familiaris	IEA

Uses of 'ontology' in PubMed abstracts

By far the most successful: GO (Gene Ontology)

GO divided into three term hierarchies

cellular component ontology

is_a

molecular function ontology

is_a

biological process ontology

flagellumice nucleationglycolysischromosomebindingdeathcellproteinperception ofstabilizationpain

When a new gene or gene product is discovered

we first try to answer three questions:

- where is it located in the cell?
- what is its molecular function?
- what biological processes does the exercise of this function contribute to?

Gene Ontology

cellular	molecular	biological
component	function	process

Two ways of existing in time

You are a continuant – an entity that continues

Your *life* is an occurrent – a process that occurs

Gene Ontology

Top level ontology defined by GO

Extending GO to provide representations of further sorts of biological entities

proteins, species, populations, diseases, symptoms, developmental anatomy, experimental processes, behavior ...

The Open Biological and Biomedical Ontologies (OBO) Foundry

nature biotechnology

Journal home > Archive > Research > Perspective > Full Text

Journal content

- Journal home
- Advance online publication
- Current issue
- Archive
- Conferences
- Focuses and Supplements
- Press releases

Nature

Biotechnology

Perspective

Nature Biotechnology 25, 1251 - 1255 (2007) Published online: 7 November 2007 | doi:10.1038/nbt1346

The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration

Barry Smith¹, Michael Ashburner², Cornelius Rosse³, Jonathan Bard⁴, William Bug⁵, Werner Ceusters⁶, Louis J Goldberg⁷, Karen Eilbeck⁸, Amelia Ireland⁹, Christopher J Mungall¹⁰, The OBI Consortium¹¹, Neocles Leontis¹², Philippe Rocca-Serra⁹, Alan Ruttenberg¹³, Susanna-Assunta Sansone⁹, Richard H

Search

RELATION TO TIME		CONTINUANT					
GRANULARITY	INDEPENDENT		DEPEN				
ORGAN AND ORGANISM	Örganism (NCBI Taxonomy)	Anatomical Entity (FMA, CARO)	Organ Function (FMP, CPRO)	Phenotypic Quality	Biological Process		
CELL AND CELLULAR COMPONENT	Cell (CL)	Cellular Component (FMA, GO)	Cellular Function (GO)	(Pa10)	(GO)		
MOLECULE	Molecule (ChEBI, SO, RnaO, PrO)		Molecular Function (GO)		Molecular Process (GO)		

Original OBO Foundry ontologies (Gene Ontology in yellow)

RELATION		CONTINUANT				
GRANULARITY	II	NDEPENDEI	NT	DEPEN		
ORGAN AND ORGANISM	Organism (NCBI Taxonomy)	Anatomical Entity (FMA, CARO)	ents	Organ Function (FMP, CPRO)	Phenotypic Quality (PaTO)	Biological Process
CELL AND CELLULAR COMPONENT	Cell (CL)	Cellular Component (FMA, GO)	environme are here	Cellular Function (GO)	(1410)	(GO)
MOLECULE	Mole (ChEB RnaO,	ecule 61, SO, . PrO)	Ψισ	Molecula (G	r Function O)	Molecular Process (GO)

Environment Ontology (including intra-organismal environments, such as the gut and oral cavities)

Ontology for General Medical Science Summary Classes Properties Notes Mappings Widgets

Jump To:	Details	Visualization	Notes (0)	Class M
	Preferred N	lame	disorder	
Independent continuant immaterial entity	ID		http://purl.obolibrary.org/ creation date: 2009-06-23	
material entity congenital malformation	curator not	te		
isorder	definition		A material entity which is c	
fiat object	1.6	1.	physical basis o	of disease.
- injury - object	definition e	editor	Albert Goldfain	
- object aggregate				
pathological anatomical struct				

Ontology for General Medical Science Summary Classes Properties Notes Mappings Widgets

Jump To:	Details	Visualization	Notes (0)	Class Ma
	Preferred N	lame	disorder	
Independent continuant immaterial entity	ID		http://purl.obo	library.org/o
 material entity congenital malformation disorder extended organism fiat object injury 	Defi entit abno	nition. A y which i ormal and	materia is clinica d part of	l ally f an
 object object aggregate organism population pathological anatomical struct pathological formation 	exte			

Ontology for General Medical Science

Summary Classes Properties Notes Mappings Widgets

Jump To:	Details	Visualization	Notes (0)	Class A	
- continuant	Preferred N	lame	extended organism		
generically dependent continuant	ID		http://purl.obo	http://purl.obolibrary.org	
immaterial entity	curator not	te	creation date: 2010-01-2		
material entity congenital malformation	definition		An object aggregate cons overlapping the organism		
extended organism	definition	editor	Albert Goldfain		
- injury	definition	source	http://code.go	ogle.com/p	
- object aggregate	label		extended organ	nism	
 organism population pathological anatomical struct 	prefixIRI		OGMS:0000087	7	
	<u> </u>			-	

Ontology for General Medical Science

Summary Classes Properties Notes Mappings Widgets

Jump To:

- continuant
 - generically dependent continuant
 - independent continuant
 - immaterial entity
 - material entity
 - congenital malformation
 - disorder
 - extended organism
 - fiat object
 - injury
 - object
 - object aggregate
 - organism population
 - pathological anatomical struct

Details	Visualization	Notes (0)	Class M			
Preferred N	Name	extended organ	nism			
ID		http://purl.obo	library.org/			
Defintion: An object aggregate						
consist	consisting of an organism and all					
material entities located within the						
organism, overlapping the organism,						
or occu	pying sites for	ormed in pa	art by			
the org	anism					

prefixIRI OGMS:000087

Eric Olsen

- Two different objects are equally good candidates for being the maternal organism, one having the foetus as a part and the other not.
- Call them the large mother and the small mother.
- Whether the foetus is a part of the maternal organism depends on which maternal organism we're talking about.
| top level | Basic Formal Ontology (BFO) | | | | | | |
|--------------|---|-----------------------|---|-----------------------------------|--------------------|--|-----------------------|
| mid-level | Information Artifact
Ontology
(IAO) | | Ontology for Biome
Investigations
(OBI) | | medical
ns | Ontology of General
Medical Science
(OGMS) | |
| domain level | Anatomy Ontology
(FMA*, CARO) | | | Environment
Ontology
(EnvO) | Infectio | ous | |
| | Cell
Ontology
(CL) | Cellular
Component | | | Ontolo
(IDO | ogy
*) | |
| | | (FMA*, GO | ·) | | Phenot
Quali | ypic
.ty | Biological
Process |
| | Subcellular Anatomy Ontology (SAO) | | | | Ontology
(PaTO) | | Ontology (GO*) |
| | Sequence Ontology
(SO*) | | | | Molecular | | |
| | Protein Ontology
(PRO*) | | | | runcti
(GO | *) | |

OBO Foundry Modular Organization

Relations

Geno	me Biology	Search Genome Biology • for				
Home Articles Au	uthors Reviewers About this journal My Ge	enome Biology				
Top Abstract	This article is part of the series <u>Ontologies</u> .					
Background	Method	Highly accessed Open Access				
Results	Relations in biomedical ontologies					
Discussion	Barry Smith ^{12*} , Werner Ceusters ³ , Bert Klagges ⁴ , Jacob Köhler ⁵ , Anand Kumar ¹ , Jane Lomax ⁶ , Chris Mungall ⁷ , Fabian Neuhaus ¹ , Alan L Rector ⁸					
Conclusion						
Acknowledgemen	and Cornelius Rosse ²					
References	* Corresponding author: Barry Smith phismi	th@buffalo.edu ∧ffiliations				

depends_on

quality depends_on bearer

depends_on

participates_in

thing participates_in process

instance_of

instances

derives_from

zygote derives_from ovum zygote derives_from sperm

pre-RNA \rightarrow mature RNA child \rightarrow adult living human being \rightarrow corpse

transformation_of

 C_2 transformation_of C_1 =def. any instance of C_2 was at some earlier time an instance of C_1

transformation_of

When does the human being begin to exist?

human being = human individual = human organism

Journal of Medicine and Philosophy 2003, Vol. 28, No. 1, pp. 45–78

Sixteen Days

Barry Smith¹ and Berit Brogaard² ¹Institute for Formal Ontology and Medical Information Science, University of Leipzig, Leipzig, Germany, and ²Department of Phil Southern Illinois University, Edwardsville, IL, USA

first there are two:

first there are two:

first there are two:

and then there is one

time goes on

when did this human individual begin to exist?

Substantial change

two drops of water flow together and become one

two early embryos fuse to become one

an ameoba splits and becomes two

a block of marble is spit and becomes two

a pair of conjoined twins is separated and becomes two

when did this human individual begin to exist?

a. single-cell (zygote) (day 0) b: multi-cell (days 0-3) c. morula (day 3) d. early blastocyst (day 4) e. implantation (days 6-13) f. gastrulation (days 14-16) g. neurulation (from day 16) h. formation of the brain stem (days 40-43) i. end of first trimester (day 98) j. viability (around day 130) k. sentience (around day 140) I. quickening (around day 150) m. birth (day 266) n. the development of self-consciousness (some time after birth) – human person

One attractive threshold for substantial change

formation of zygote (fertilization)

a. single-cell (zygote) (day 0) b: multi-cell (days 0-3) c. morula (day 3) d. early blastocyst (day 4) e. implantation (days 6-13) f. gastrulation (days 14-16) g. neurulation (from day 16) h. formation of the brain stem (days 40-43) i. end of first trimester (day 98) j. viability (around day 130) k. sentience (around day 140) I. quickening (around day 150) m. birth (day 266) n. the development of self-consciousness (some time after birth) – human person

perhaps yes

but the same human individual as this?

which one is the human individual?

this whole, bound by *zona pellucida* = human individual – a view of this sort is defended by Rose Hershenov (see: <u>http://www.metaphysicsandbioethics.com/</u>) 71

and so on

on this view, we were all once zygotes, we were all once blastulas, ...

a. single-cell (zygote) (day 0) b: multi-cell (days 0-3) c. morula (day 3) d. early blastocyst (day 4) e. implantation (days 6-13) f. gastrulation (days 14-16) g. neurulation (from day 16) h. formation of the brain stem (days 40-43) i. end of first trimester (day 98) j. viability (around day 130) k. sentience (around day 140) I. quickening (around day 150) m. birth (day 266) n. the development of self-consciousness (some time after birth) – human person
Days 14-16: Gastrulation

Gastrulation transforms the blastula from a cluster of cells into a single heterogeneous entity—a whole multicellular individual living being which has a body axis and bilateral symmetry and its own mechanisms to protect itself and to restore stability in face of disturbance.

Wolpert

"It is not birth, marriage or death, but gastrulation, which is truly the most important event in your life."

Neurulation (begins day 16)

transforms the gastrula by establishing the beginning of the central nervous system.

A 2nd massive migration of cells and topological folding and connecting and subsequent cell specialization yielding neural tube a. single-cell (zygote) (day 0) b: multi-cell (days 0-3) c. morula (day 3) d. early blastocyst (day 4) e. implantation (days 6-13) f. gastrulation (days 14-16) g. neurulation (from day 16) h. formation of the brain stem (days 40-43) i. end of first trimester (day 98) j. viability (around day 130) k. sentience (around day 140) I. quickening (around day 150) m. birth (day 266) n. the development of self-consciousness (some time after birth) – human person

Conclusion of "16 Days"

a substantial change occurs at the latest 16 days after fertilization

and as a result of this substantial change a human being* comes into existence

*you

One question: was I ever a whole blastula?

- Another question: was I ever a part of my mother?
- Is the blastula like gut flora, or gut pathogens?
- Or is it like the kidney or the liver, an organ of the mother?

Blastula

hatching of the blastocyst from out of the fertilization membrane and adhesion on the endometrium

- 1 Epithelium of the uterine mucosa
- 2 Hypoblast
- 3 Syncytiotrophoblast
- 4 Cytotrophoblast

Fig. 19 - Implantation: 7th-8th day

6 Blastocyst cavity

- **1** Syncytiotrophoblast (ST)
- 2 Cytotrophoblast (CT)
- 3 Epiblast
- 4 Hypoblast
- 5 Blastocyst cavity
- 6 Maternal blood capillary
- 7 Amniotic cavity

- 8 Amnioblasts
- 9 Fibrin plug
- 10 Trophoblast lacunae
- **11** Multiplying hypoblast

- 1 Hypoblast growing ventrally
- 2 Eroded maternal capillaries

- 3 Extraembryonic reticulum
- 4 Heuser's membrane
- 5 Amniotic cavity
- 6 Cytotrophoblast
- 7 Syncytiotrophoblast
- 8 Lacunae, filled with blood

AMIA Annual Symposium Proceedings Archive

AMIA Annu Symp Proc. 2005; 2005: 669-673. PMCID: PMC1560856

How to Distinguish Parthood from Location in Bio-Ontologies

Stefan Schulz,^{a,b} Philipp Daumke,^a Barry Smith,^{c,d} and Udo Hahn^e

Author information ► Copyright and License information ►

Is something in the extended organism a part_of the organism or just contained_in

Is it an Artifact – Yes \rightarrow then contained_in

- No. Is it necessary for the organism's functioning?
- Yes \rightarrow Then part_of
 - No. Does it have the same genetic origin?

Yes \rightarrow Then part_of

No \rightarrow Then contained_in

NOTE THE ABOVE (WHICH DATES FROM 2005) NEEDS RADICAL IMPROVEMENT

Examples

- Amalgam filling in a tooth: Contained_in (Artifact)
- A transplanted lung in an organism: Part_of
- A metastasis of a breast cancer in the brain: Contained_in
- A bacterium inside your gut: Contained_in
- A glioblastoma in the brain: Part_of. The tumor is not functionally related to the brain, but it has its origin therein.
- A fetus in the womb of a mother. No because not necessary for functioning.

Metaphysics of Pregnancy Foetuses as part of the maternal organism

Elselijn Kingma e.m.kingma@soton.ac.uk

Background Metaphysics of Pregnancy

Three Questions:

- What is the relationship between pregnant organism and foetus?
- When does one organism become two?
- What entities (if any) persist through pregnancy and birth

What is the relationship between Gravida and Foster?

Part-whole model: Foster is part of the Gravida as much as her organs and other bits are.

Background/Caveats

• Forget about Persons!!!!!!!

Placental Mammals only

. . .

On Elselijn's view

- Foster before implantation is not part of the mother
- Foster at implantation *becomes* an organ of the mother
- Foster at birth *becomes* a *new organism* just in virtue of walking out the door

Wallabies give birth to very immature young that complete most of their development attached to the teat, usually within a pouch

Developmental Dynamics

Volume 243, Issue 2, Article first published online: 13 NOV 2013

Heterochrony in the Regulation of the Developing Marsupial Limb

Keng Yih Chew,¹ Geoffrey Shaw,^{1,2} Hongshi Yu,^{1,2} Andrew J. Pask,^{1,2} and Marilyn B. Renfree^{1,2*}

Three kinds of mammals

merotremes (give birth by laying eggs) marsupial (joeys and pouches) placental (placenta shared between mother and fetus)

most reptiles lay eggs

but in the case of some snakes and lizards, the eggs develop inside the mother's body so that she gives birth to live young

babies are born inside a thin membrane which they wrip apart with their teeth

Letter

Early origin of viviparity and multiple reversions to oviparity in squamate reptiles

Issue

R. Alexander Pyron^{1,*} and Frank T. Burbrink _{2,3}

The first lizards and snakes likely gave live birth exclusively. The majority of snake and lizard ancestors were live-birthing creatures who adapted to lay protective eggs, only to adapt again and again for live birthing or egg laying, depending on ecological conditions.

Ecology Letters Volume 17, Issue 1, pages 13–21, January 2014

A fetomaternal organ with two components:

- 1. the **fetal placenta**, which develops from the trophoblast,
- 2. the maternal placenta, which develops from the maternal uterine tissue.

Conclusion

- For all mammals (and for all reptile and all birds) the pregnancy process is ontologically (mereotopologically) identical. In each case there is a capsule involved to keep the foster separate from, but close to, the mother, and to ensure for the foster an appropriate avenue of (appropriately timed) escape.
- For some mammals this capsule is an egg. For some mammals it is a pouch. For some mammals it is a multi-layered structure, the outer layer of which involves a unique fetal organ called the placenta.